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On Covariant Phase Space and the
Variational Bicomplex

Enrique G. Reyes1

Received

The notion of a phase space in classical mechanics is well known. The extension of this
concept to field theory however, is a challenging endeavor, and over the years numerous
proposals for such a generalization have appeared in the literature. In this paper We
review a Hamiltonian formulation of Lagrangian field theory based on an extension to
infinite dimensions of J.-M. Souriau’s symplectic approach to mechanics. Following G.
Zuckerman, we state our results in terms of the modern geometric theory of differential
equations and the variational bicomplex. As an elementary example, we construct a
phase space for the Monge–Ampere equation.
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1. INTRODUCTION

Bacry (1967) noted almost four decades ago that one can find the equations
of motion of (spinning) elementary particles by studying Hamiltonian systems on
coadjoint orbits of the Poincaré group. By doing so, he made the crucial observa-
tion that it is natural and important to introduce phase spaces not just as a set of p’s
and q’s equipped with the canonical symplectic form dqi ∧ dpi , but as nontrivial
symplectic manifolds (Crnković, 1987, 1988; Crnković and Witten, 1987). His
work was put in a general context by J.-M. Souriau in his ground-breaking Struc-
ture des Systemes Dynamiques (Souriau, 1970). This seminal treatise is the first
complete treatment of mechanics which fully utilizes the language and techniques
of modern symplectic geometry.

It is now understood that a fruitful approach for treating dynamical problems
with a finite number of degrees of freedom, is to model them as Hamiltonian
systems on (in general nontrivial) symplectic manifolds (Abraham and Marsden,
1978; Arnold, 1989; Guillemin and Sternberg, 1984; Marsden, 1981; Marsden
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and Ratiu, 1999). It is less clear how to proceed when considering field theory. A
rigorous approach based on (symplectic) manifolds modelled on Banach or Frechet
spaces would perhaps be the best choice (Abraham and Marsden, 1978; Arnold,
1989; Marsden, 1981; Marsden and Ratiu, 1999) but to pursue such an endeavor
is very delicate: results proven along these lines rely heavily on geometry and on
hard nonlinear analysis, as J. Marsden’s lecture notes (Marsden, 1981) testify.

A more formal approach to the Hamiltonian structure of (systems of) evolution
partial differential equations is summarized in P. Olver’s treatise (Olver, 1993)
(see also Olver, 1989): One gives up the manifold description of phase space,
and replaces the symplectic form by a “Hamiltonian differential operator.” This
point of view has been developed and applied with great success in integrable
systems, giving rise, for instance, to the important structure of a “bi-hamiltonian
system,” which appears to encode the intuitive meaning of integrability for partial
differential equations of evolutionary type.

If one is interested in the formal properties of evolution equations (e.g., con-
servation laws, symmetries, recursion operators (Nutku, 1996, 2001; Olver, 1989,
1993) it is natural to use this second point of view. On the other hand, if one is
interested in canonical quantization of a dynamical system (Woodhouse, 1992) or
in understanding bifurcations and the structure of the space of solutions (Marsden,
1981; Marsden and Ratiu, 1999) one most probably needs to possess a detailed
understanding of the structure of the phase space of the system at hand, as in
Marsden (1981) or Aldaya et al. (1992a,b,c), for example.

How are phase spaces constructed in field theory? The most common approach
to field theory starts with a Lagrangian. One then uses a method due to Dirac (see
(Abraham and Marsden, 1978; Cariñena and López, 1991; Crnković and Witten,
1987; Hanson et al., 1976; Henneaux and Teitelboim, 1992) and references therein)
to obtain a physical phase space equipped with canonical variables reminiscent
of the p’s and q’s of classical mechanics. By doing so, one loses covariance, a
fact usually seen as an imperfection from a physical point of view (Crnković,
1987, 1988; Crnković and Witten, 1987; Henneaux and Teitelboim, 1992). From
a geometrical point of view, on the other hand the description of the phase space
through canonical coordinates appears incomplete: One would like to present it in
an intrinsic, global fashion.

A way to repair these shortcomings, and to move from a Lagrangian point
of view to a Hamiltonian picture, is to stay “in between” the formal versions
of the Hamiltonian formalism (Hanson et al., 1976; Olver, 1989, 1993) and its
completely rigorous symplectic version (Abraham and Marsden, 1978; Arnold,
1989; Marsden, 1981; Marsden and Ratiu, 1999): One may attempt to obtain a
covariant, coordinate-free description of the phase space, as a first step towards
finding a description of the dynamics à la Marsden (Marsden, 1981) say, and also
as a previous step to canonical quantization (Woodhouse, 1992). This has been
accomplished by G. Zuckerman—using formal arguments rooted in the rigorous
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theory of the variational bicomplex—in a beautiful and not so well-known paper
(Zuckerman, 1987) written in 1986. He appears to have been the first in explaining,
in full generality, how to build phase spaces for Lagrangian theories with finite
or infinite number of degrees of freedom in a covariant way, using directly the
Lagrangian and without going through Dirac’s theory of constraints.

Historically, some special cases of Zuckerman’s analysis appeared before
(Zuckerman, 1987), notably in Souriau’s treatise (Souriau, 1970), in N.
Woodhouse’s monograph on geometric quantization (Woodhouse, 1992), in S.
Sternberg’s analysis of the formal variational calculus of Gel’fand and Dikii
(Sternberg, 1978), and in fact in the work of J. L. Lagrange himself, as pointed out
in Landi and Rovelli (1997, 1998). Related and subsequent work on the subject
are, among others, the inspiring paper written by Crnković and Witten (1987) on
the covariant description of phase spaces for Yang–Mills theory and general rela-
tivity, the Hamiltonian analysis by Crnković (1987, 1988) of a general first-order
Lagrangian (super)theory and superstrings, the covariant phase space analysis of
two-dimensional gravity models by Navarro-Salas, Navarro and Aldaya (Aldaya
et al., 1992a,b,c), and the proposal by Landi and Rovelli (1997, 1998) of Dirac
eigenvalues as observables in euclidean gravity.

In spite of these advances however, no complete exposition of Zuckerman’s
ideas seems to be available in the literature, except for a review of Zuckerman
(1987), appearing in a recent abstract exposition of field theory (Deligne and Freed,
1999). Due to the importance of Zuckerman (1987), it is natural to try to fill this
gap. In this paper we consider some aspects of Zuckerman’s article from the point
of view of the geometric theory of differential equations and the variational bicom-
plex (Anderson, 1989, 1992; Anderson and Kamran, 1995; Olver, 1989, 1993),
taking advantage of the fact that the great development of these subjects allows us
to be both precise and concrete. This work is organized as follows: Section 2 is a
summary of some relevant facts on symplectic and presymplectic manifolds based
mainly in Abraham and Marsden, 1978; Marsden and Ratiu (1999) and Souriau
(1970). The variational bicomplex is studied in Section 3, and Zuckerman’s con-
struction is presented in Section 4. As an example, we apply Zuckerman’s ideas to
the Monge–Ampere equation in Section 5. A fuller exposition of these and related
matters will appear elsewhere.

The Einstein summation convention will be used throughout.

2. HAMILTONIAN SYSTEMS AND PRESYMPLECTIC MANIFOLDS

We review the relation between Hamiltonian mechanics and Souriau reduc-
tion, that is, the understanding of the equations of motion as a (perhaps local) de-
scription of the leaves of a foliation of a presymplectic manifold (Souriau, 1970).
The manifolds appearing in this section are all finite-dimensional. All maps, vector
fields and tensors are assumed to be of class C∞.
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2.1. Presymplectic and Symplectic Manifolds

A two-form ω on a manifold M is a presymplectic form on M if it is closed
and of constant rank on M . If, in addition, ω is non degenerate (that is, if the rank
of ω is equal to the dimension of M) we say that (M, ω) is a symplectic manifold
and that ω is a symplectic form on M . From now on, the adjective “presymplectic”
will be applied exclusively to closed two-forms of constant rank strictly less than
dim(M).

A standard example of symplectic manifold is the cotangent bundle T ∗M of
a given manifold M (Abraham and Marsden, 1978; Arnold, 1989; Marsden and
Ratiu, 1999). In coordinates, if (qi ) is a coordinate chart on M , and
αq = (q1, . . . , qn , p1, . . . , pn) is an element of T ∗M , then ω0 = dqi ∧ dpi is a
symplectic form on T ∗M . The symplectic manifold (T ∗M, ω0) is called the canon-
ical phase space of the configuration space M .

The local characterization of (pre)symplectic forms is given by Darboux
theorem (Abraham and Marsden, 1978).

Theorem 2.1. Suppose that ω is a non degenerate two-form on a 2n-dimensional
manifold M. Then dω = 0 if and only if for any m ∈ M there exists a chart (U, φ)
about m such that φ(m) = 0 and

ω|U = dxi ∧ dyi , (1)

in which φ|U = (x1, . . . , xn , y1, . . . , yn). More generally, if (M, ω) is a (2n + k)–
dimensional presymplectic manifold with rank(ω) = 2n, for each m ∈ M there is
a chart (U, ψ) about m such that

ω|U = dqi ∧ dri ,

in which ψ |U = (q1, . . . , qn , r1, . . . , rn , w1, . . . , wk).

2.2. Hamiltonian Systems

Let (M, ω) be a symplectic manifold and let H : M → R be a smooth func-
tion on M . The triplet (M, ω, H ) is called the Hamiltonian system on (M, ω)
with Hamiltonian function H and phase space (M, ω). The evolution of the sys-
tem (M, ω, H ) is given by the flow of the Hamiltonian vector field X H uniquely
determined by the equation

iX H ω = dH . (2)

(The one-form iX H ω on M is given by iX H ω(Y ) = ω(X H , Y ) for any vector field
Y on M .) That Eq. (2) does encode Hamilton’s equations is a consequence of
Darboux’s result:
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Proposition 2.1. Let (M, ω) be a symplectic manifold and suppose that (q1, . . . ,
qn , p1, . . . , pn) are canonical coordinates (i.e. given by Darboux’s theorem) on M,
and let H : M → R be a smooth function on M. Then, the equation iX H ω = d H
implies that X H = ( ∂ H

∂pi
, − ∂ H

∂qi ). Thus (q(t), p(t)) is an integral curve of X H if and
only if

dqi

d t
= ∂ H

∂pi
,

dpi

dt
= −∂ H

∂qi
, i = 1, . . . , n. (3)

2.3. The Space of Motions

It is not always straightforward to find a symplectic description of a me-
chanical system (Abraham and Marsden, 1978; Guillemin and Sternberg, 1984;
Marsden, 1981; Souriau, 1970): as stated in the Introduction, it is not uncommon
to consider systems described by a (singular) Lagrangian (Cariñena and López,
1991; Hanson et al., 1976; Henneaux and Teitelboim, 1992), and to find canonical
formulations for them by means of the Dirac constraint algorithm (Abraham and
Marsden, 1978; Cariñena and López, 1991; Crnković and Witten, 1987; Hanson
et al., 1976; Henneaux and Teitelboim, 1992; Nutku, 1996, 2001; Woodhouse,
1992). When applied to systems with a finite number of degrees of freedom, the
final result of this algorithm is in general a presymplectic manifold (M, ω). Now,
given a dynamical system described by a presymplectic manifold (M, ω)—which
was obtained perhaps by means of the Dirac constraint algorithm—the correspond-
ing phase space is constructed as follows (Souriau, 1970):

For each v ∈ M we set kervω = {Zv ∈ Tv M : iZv ω = 0}, and define the dis-
tribution of vector spaces

ker ω =
⋃
v∈M

kervω. (4)

Since ω is of constant rank, the dimension of kervω is independent of v . Moreover
if Z and Y are vector fields on M such that Z (v) and Y (v) belong to kervω for
all v ∈ M , then, i[Z ,Y ]ω = L Z (iY ω) − iY (L Zω) = 0 − iY (d(iZω) + iZ dω) = 0,
in which for any differential form σ, L Zσ is the Lie derivative of σ along Z , see
(Abraham and Marsden, 1978), and so [Z , Y ](v) ∈ kervω for all v ∈ M . Frobenius’
theorem (Abraham and Marsden, 1978; Marsden and Ratiu, 1999) implies that the
distribution ker ω is integrable, that is, there exists a foliation 	ω = {Lα}α∈A of
M such that its tangent bundle T (M, 	ω), in which

T (M, 	ω) =
⋃
α∈A

⋃
v∈Lα

TvLα ,

is equal to ker ω.

Definition 2.1. If a dynamical system is described by a presymplectic manifold
(M, ω), we call (M, ω) the evolution space of the system.
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If (M, ω) is an evolution space, the space of motions of (M, ω) is
UM = M/ker ω, that is, UM is the set of leaves of the foliation 	ω determined by
the integrable distribution (4).

Given a presymplectic manifold (M, ω), the procedure of constructing the
corresponding space of motions UM will be referred to as Souriau reduction, after
the fundamental contributions to the subject made by Souriau (1970).

An useful criterion for assuring that UM is a manifold is the following (see
(Marsden, 1981; Marsden and Ratiu, 1999; Woodhouse, 1992) and references
therein): UM is a manifold if and only if for every v ∈ M there exists a local
submanifold �v of M such that �v intersects every leaf of the foliation 	ω in at
most one point (or nowhere), and Tv�v ⊕ Tv (M, 	ω) = Tv M . The submanifold
�v is called a slice or local cross section for 	ω. It follows that if UM is a manifold,
its dimension is equal to dim(M) − dim(ker ω).

The next theorem, which goes back at least to Souriau (1970; see Abraham
and Marsden, 1978; Arnold, 1989; Guillemin and Sternberg, 1984) is the main
result on this subject:

Theorem 2.2. Let (M, ω) be a presymplectic manifold and assume that the space
of motions UM is a manifold. Then, UM can be equipped with a symplectic structure
ω̃ such that π∗ω̃ = ω, in which π : M → M/ker ω is the canonical projection from
M onto UM .

The true phase space for a mechanical system modelled on a presymplec-
tic manifold (M, ω) is the symplectic manifold (UM , ω̃) constructed in the last
theorem. A very interesting application of this point of view is Künzle’s (1972)
discovery of a genuine presymplectic description of a spinning particle in an exter-
nal gravitational field: this paper appears to be the first deep physical application
of Souriau reduction. Later, S. Sternberg and his coworkers formulated a program
to reduce classical mechanics to the construction of presymplectic manifolds and
the corresponding spaces of motion. Their work is summarized in (Guillemin and
Sternberg, 1984).

We now explain the name “space of motions.” Souriau’s original discussion on
the connection between spaces of motions and Hamiltonian systems is in Souriau
(1970, pp. 128–132). We begin with two elementary lemmas:

Lemma 2.3. Let (M, ω, H ) be a Hamiltonian system on the symplectic manifold
(M, ω). Define N = M × R, and set 
 = p∗

1ω + (p∗
1d H ) ∧ (p∗

2dt), in which p1 :
N → M and p2 : N → R are the canonical projection maps. Then, (N , 
) is a
presymplectic manifold.

The proof of the lemma consists in checking that for each (m, t) ∈ N , ker(m,t)


 = {(αX H (m), α) : α ∈ R}, so that the dimension of ker(m,t)
 is equal to 1 for
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all (m, t) ∈ N . Of course, if m(t) is an integral curve of X H and n(t) = (m(t), t),
then n′(t) ∈ kern(t)
 for all t . Conversely we recover, up to parameterizations, the
integral curves of X H :

Lemma 2.4. Let (M, ω, H ) be a Hamiltonian system on the symplectic mani-
fold (M, ω), and let (N , 
) be the presymplectic manifold defined in Lemma 2.3.
The integral curves of the Hamiltonian system (M, ω, H ) can be obtained, up to
parametrization, by projecting the leaves of the foliation 	
 into M.

Proof: Parametrize a leaf L ∈ 	
 by means of a curve n(s) = (m(s), γ (s)) sat-
isfying n′(s) ∈ kern(s)
 and n′(s) �= 0 for all s. Then n(s) can be reparametrized to
be of the form (m(t), t), where m(t) is an integral curve of X H : since n′(s) =
(m ′(s), γ ′(s)) ∈ kern(s)
 then m ′(s) = γ ′(s)X H (m(s)), and γ ′(s) �= 0 for all s;
thus, if one sets t = γ (s), then n(t) = ((m ◦ γ −1)(t), t), and n′(t) = (X H (m ◦
γ −1(t)), 1). �

Following Souriau (1970), we then identify the motions of the system de-
scribed by (M, ω, H ) with the leaves of the foliation induced by the integrable
distribution ker 
. We obtain the following result:

Proposition 2.2. Define N and 
 as in Lemma 2.3, and identify the leaves
of the foliation 	
 with the integral curves of X H . Then, the space of motions
UN = N/ker 
 is a manifold. Moreover, the symplectic manifolds (M, ω) and
(UN , 
̃), in which 
̃ is the symplectic form on UN determined by Theorem 2, are
symplectomorphic, that is, there exists a diffeomorphism λ : UN → M such that
λ∗ω = 
̃.

Proof: The idea of the proof is that, as explained above, a leaf L ∈ UN can be
described by a curve (m(t), t), in which m(t) is an integral curve of X H . We can
then define the map λ : UN → M by λ(L) = m(0).

More rigorously, we use coordinates: the flow box theorem (Abraham and
Marsden, 1978) says that for each m ∈ M there exists an open set Um ⊆ M and a
smooth map F : Um × I → M , in which I = (−a, a) with a > 0 or a = ∞, such
that for each v ∈ Um , the curve cv : I → M given by cv (s) = F(v , s) is the integral
curve of X H passing through v . Now, since the leaves of N through u ∈ Um are
precisely the integral curves of X H , the submanifold � = Um × {0} is a slice for
the foliation 	
. Thus, UN is a manifold, and for (u, 0) ∈ �, we simply define
the function λ as the projection λ(u, 0) = u. This is of course a bijective smooth
symplectic map. �

In conclusion, we have identified the phase space of a dynamical system
with the space of classical solutions of the system at hand. This identification is
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at the core of the generalization of Souriau’s point of view to Lagrangian field
theory (Crnković and Witten, 1987; Woodhouse, 1992; Zuckerman, 1987): in this
infinite dimensional context, one considers the space of all classical solutions
to the equations of motion, and equips it with a presymplectic structure. One
then constructs the corresponding “space of motions,” the genuine phase space
of the theory. We review this generalization in Section 4. Since we will state
our results in terms of the variational bicomplex, we discuss this important tool
first.

3. THE VARIATIONAL BICOMPLEX

In this section we quickly review the modern geometrical setting for differ-
ential equations and introduce the variational bicomplex. Our main references for
these matters are (Anderson, 1989, 1992; Anderson and Kamran, 1995) and Olver
(1993).

3.1. Geometry of Infinite Jets

Let π : E → M be a trivial fiber bundle. The manifold M is the space of
independent variables xi , 1 ≤ i ≤ n, and the typical fiber is the space of the de-
pendent variables uα , 1 ≤ α ≤ m. We also let J k E , k ≥ 1, be the bundle of k-jets
of local sections of E .

The infinite jet bundle J∞E → M is the inverse limit of the tower of jet bun-
dles M ← E · · · ← J k E ← J k+1 E ← · · · under the standard projections π k

l :
J k E → J l E , k > l. Locally, J∞E is described by canonical coordinates (xi , uα ,
uα

i1
, . . . , uα

i1i2...ik
, . . .), 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n, obtained from the standard co-

ordinates on the finite-order jet bundles J k E ,

uα
i1

( j k(s)(p)) = ∂sα

∂xi1
(p), uα

i1i2
( j k(s)(p)) = ∂2sα

∂xi1∂xi2
(p) , . . . , (5)

in which p ∈ M and j k(s) is the k–jet of the local section s : (xi ) �→ (xi , sα(xi ))
of E .

Any local section s : (xi ) �→ (xi , sα(xi )) of E lifts to a unique local section
j∞(s) of J∞E called the infinite prolongation of s. In coordinates, j∞(s) is the
section (

xi , sα(xi ),
∂sα

∂xi1
(xi ) , . . . ,

∂ksα

∂xi1 · · · ∂xik
(xi ) , . . .

)
.

A function f : J∞E → R is smooth if it factors through a finite-order jet
bundle, that is, if f = fk ◦ π∞

k for some function fk : J k E → R, in which π∞
k :

J∞E → J k E denotes the canonical projection from J∞E onto J k E .
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A vector field X on J∞E is a derivation on the ring of smooth functions on
J∞E . In local coordinates, vector fields are formal series of the form

X = Ai
∂

∂xi
+

∑
k≥0

1≤i1≤···≤ik≤n

Bα
i1...ik

∂

∂uα
i1...ik

, (6)

in which Ai , Bα
i1...ik

are smooth functions on J∞E . Vector fields X on M can be
canonically prolonged to vector fields pr∞ X on J∞E : the action of the derivation
pr∞ X on a smooth function f on J∞E is given by

pr∞ X ( j∞(s)(p)) · f = X (p) · ( f ◦ j∞(s)) (7)

for all local sections j∞(s) of J∞E and all p ∈ M . This prolongation operation
defines a connection C on J∞E called the Cartan connection: the horizontal lift
of a vector field X on M , also called the total derivative in the X direction, is
simply pr∞ X . Locally, horizontal vector fields are linear combinations of the
total derivatives D j , in which D j = pr∞ (∂/∂x j ), that is,

D j = ∂

∂x j
+ uα

j

∂

∂uα
+ ui1 j

∂

∂uα
i1

+ ui1i2 j
∂

∂uα
i1i2

+ . . . . (8)

The prolongation operation (7) satisfies pr∞[X1, X2] = [pr∞ X1, pr∞ X2]
for all vector fields X1 and X2 on M , and therefore the Cartan connection is flat.

Differential forms on J∞E are the pull-backs of differential forms on J k E
by the projections π∞

k . Thus, any differential k-form ω on J∞E may be written
in canonical coordinates as a finite linear combination of terms

A dxi1 ∧ · · · ∧ dxi p ∧ duα1
j1··· jp1

∧ . . . ∧ du
αq

l1···l pq
, (9)

in which p + q = k and A is a smooth function on J∞E . A differential form ω on
J∞E is called a contact form if j∞(s)∗ω = 0 for all local sections s of E . The set
of contact forms determines an ideal I of the ring of differential forms on J∞E .
Locally, the contact ideal I is generated by the basic contact one-forms

θα
i1...ik

= duα
i1...ik

− uα
i1...ik j dx j , k ≥ 0, (10)

and it is not hard to check that the exterior derivative of θα
i1...ik

is given by

dθα
i1...ik

= dx j ∧ θα
i1...ik j . (11)

Contact forms are important because they provide a dual description of the Cartan
connection: a vector field X on J∞E is horizontal if and only if iXω = 0 for all
one-forms ω ∈ I.

3.2. The Variational Bicomplex

To define the variational bicomplex we bigrade the differential forms on
J∞E using the Cartan connection of J∞E (Anderson, 1989, 1992; Anderson
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and Kamran, 1995): A p-form on J∞E is of type (r, s), in which r + s = p, if
ω(X1, . . . X p) = 0 whenever either

(a) more than s of the vector fields X1, . . . X p are π∞
M -vertical (that is, if

we write X1, . . . X p in local coordinates as in (6), all the coefficients Ai

vanish) or
(b) more than r of the vector fields X1, . . . X p are horizontal with respect to

the connection C of J∞E .

In coordinates, a p-form ω is of type (r, s) if it can be written as a finite sum
of terms of the form

A dxi1 ∧ · · · ∧ dxir ∧ θ
α1
j1··· jp1

∧ . . . ∧ θ
αs
l1···l ps

. (12)

Now, let 
p(J∞E) denote the set of p-forms on J∞E , and let 
r,s(J∞E) denote
the set of p-forms of type (r, s). Then, we have the direct sum decomposition


p(J∞E) =
⊕

r+s=p


r,s(J∞E).

Equation (11) implies that the exterior derivative d on J∞E splits,

d : 
r,s(J∞E) → 
r+1,s(J∞E) ⊕ 
r,s+1(J∞E),

and we can write d = dH + dV , in which dH : 
r,s(J∞E) → 
r+1,s(J∞E), and
dV : 
r,s(J∞E) → 
r,s+1(J∞E) are the horizontal and vertical exterior deriva-
tives respectively. The equation d2 = 0 implies that d2

H = d2
V = 0 and dH dV +

dV dH = 0. In local coordinates, dH and dV are computed by means of the follow-
ing formulae:

dH f =
∑

i

(Dxi f )dxi ; (13)

dV f = ∂ f

∂uα
θα + ∂ f

∂uα
i

θα
i + ∂ f

∂uα
i j

θα
i j + . . . ; (14)

dH (dxi ) = 0, dHθα
i1...ik

=
∑

j

dx j ∧ θα
i1...ik j ; (15)

dV (dxi ) = 0, dV θα
i1...ik

= 0. (16)

Thus, for example, dV xi = 0 and dV uα
i1...ik

= θα
i1...ik

.
The variational bicomplex for the bundle E is the double complex (
∗,∗

(J∞E), dH , dV ) of differential forms on the infinite jet bundle J∞E . In detail,
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writing 
∗,∗ for 
∗,∗(J∞E), this important bicomplex looks like follows:

...
...

↑ dV ↑ dV ↑ dV ↑ dV

0 −→ 
0,2 dH−→ 
1,2 dH−→ . . .
dH−→ 
n−1,2 dH−→ 
n,2

↑ dV ↑ dV ↑ dV ↑ dV

0 −→ 
0,1 dH−→ 
1,1 dH−→ . . .
dH−→ 
n−1,1 dH−→ 
n,1

↑ dV ↑ dV ↑ dV ↑ dV

0 −→ R −→ 
0,0 dH−→ 
1,0 dH−→ . . .
dH−→ 
n−1,0 dH−→ 
n,0

(17)

If the fiber bundle E → M is simply R
m+n → R

n , all the sequences ap-
pearing in (17), both horizontal and vertical, are exact. This important result has
been proven by several researchers, notably I. M. Anderson, L. Dickey, F. Takens,
W. M. Tulczyjew, T. Tsujishita, and A. M. Vinogradov. Original references ap-
pear in Anderson (1989, 1992), Anderson and Kamran (1995), Olver (1993), and
Zuckerman (1987).

4. HAMILTONIAN FORMALISM FOR
LAGRANGIAN FIELD THEORIES

We fix a fiber bundle π : E → M as in Section 3 and let J∞E be the infinite
jet bundle of E . The space 
n,1(J∞E) possesses a distinguished subspace En+1(E)
of all source forms on J∞E : we say that a differential form ω ∈ 
n,1(J∞E) is a
source form if the local representative of ω in any system of coordinates (xi , uα)
on E can be written as

ω = Pβ

(
xi , uα , uα

i , . . . , uα
i1...ik

)
duβ ∧ dx1 ∧ · · · ∧ dxn ,

or, equivalently, if ω = Pβ(xi , uα , uα
i , . . . , uα

i1...ik
) θβ ∧ dx1 ∧ · · · ∧ dxn . An in-

trinsic characterization of the space of source forms is in Anderson (1989,
1992). Their importance is due to the following lemma (Anderson, 1989, 1992;
Zuckerman, 1987).

Lemma 4.5. Assume that ω ∈ 
n,1(J∞E). Then, ω can be written uniquely as

ω = ω1 + dHη , (18)

in which ω1 ∈ En+1(E) is a source form and η ∈ 
n−1,1(J∞E).

Suppose now that we fix a Lagrangian density λ ∈ 
n,0(J∞E), so that in
local coordinates (xi , uα), λ = L(xi , uα , uα

i , . . . , uα
i1...ik

)dx1 ∧ · · · ∧ dxn , (see
Anderson, 1989, 1992; Olver, 1993; Zuckerman, 1987). The vertical exterior
derivative dV λ belongs to 
n,1(J∞E), and the last lemma implies that we
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can write

dV λ = E(λ) + dHη (19)

uniquely, in which E(λ) is a source form and η ∈ 
n−1,1(J∞E). We remark
that essentially, E(λ) is the Euler–Lagrange operator evaluated at L , that is,
E(λ) = Eα(L)duα ∧ dx1 ∧ · · · ∧ dxn , in which

Eα(L) = ∂L

∂uα
− Di

(
∂L

∂uα
i

)
+ Di D j

(
∂L

∂uα
i j

)
− · · · ,

(see Anderson, 1989, 1992; Olver, 1993). We now define U (λ) ∈ 
n−1,2

(J∞E) by

U (λ) = dV η , (20)

in which η is determined by the fundamental equation (19). The differential form
U (λ) is Zuckerman’s universal current. We observe that dV U (λ) = 0 and that,
less trivially, the horizontal derivative dH U (λ) vanishes on solutions uα(xi ) to the
Euler–Lagrange equations. Indeed, on solutions to Eα(L) = 0, Eq. (19) becomes
dV λ = dHη, and therefore

0 = dV dV λ = dV dHη = −dH dV η = −dH U (λ) . (21)

After Zuckerman (1987), we say that the differential (n − 1, 2)-form U (λ) is
a conserved current for the Euler–Lagrange equations Eα(L) = 0, in the sense of
the following definition:

Definition 4.2. Fix a form λ ∈ 
n,0(J∞E) as above. A differential form K ∈

n−1,q (J∞E), q ≥ 0, is a conserved current for the Euler–Lagrange equations
Eα(L) = 0 if

dH K = 0

whenever uα(xi ) is a solution to the equations Eα(L) = 0.
The conserved currents of Definition 4.2 generalize the standard conserva-

tion laws of field theory: as is well-known, conservation laws are usually de-
fined as differential forms K ∈ 
n−1,0(J∞E) which are closed on solutions, (see
Anderson, 1989, 1992; Anderson and Kamran, 1995; Abraham and Marsden, 1978;
Olver, 1989, and references therein). The importance of these new conserved cur-
rents, also called higher-degree or form-valued conservation laws, has been rec-
ognized only recently (Anderson, 1989, 1992; Anderson and Kamran, 1995).

Definition 4.2 extends to arbitrary systems of partial differential equations.
Thus, for example, it is a straightforward exercise to check that the canonical
symplectic form ω0 = dqi ∧ dpi considered in Section 2 is a (0,2)-differential
form on J∞E (with E → M being the trivial bundle R

2n+1 → R with coordinates
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(t , qi , pi ), i = 1, . . . n) which is a form-valued conservation law for Hamilton’s
equations.

The following definition replaces the finite dimensional manifolds of
Section 2:

Definition 4.3.

(a) The solution variety SL associated with a Lagrangian density λ = L
(xi , uα , uα

i , . . . , uα
i1...ik

)dx1 ∧ · · · ∧ dxn is the set of all local smooth
sections

ψ : (xi ) �→ (xi , uα(xi ))

of the bundle E such that uα(xi ) is a solution to the Euler–Lagrange
equations Eα(L) = 0.

(b) For each ψ ∈ SL , the tangent space Tψ SL at ψ is the set of all vector fields

δψ = Gα ∂

∂uα
+ Di1 Gα ∂

∂uα
i1

+ Di1 Di2 Gα ∂

∂uα
i1i2

+ . . . (22)

on the infinite jet bundle J∞E such that Gα(ψ)—the pull-back of Gα by
the section ψ ∈ SL—satisfy the Jacobi equations, that is, the linearization
of the Euler–Lagrange equations at ψ .

The precise structure of SL may be quite complicated. For example, a deep
result by A. Fisher, J. Marsden, and V. Moncrief states that the space of all (globally
hyperbolic) solutions to Einstein’s vacuum equations, equipped with a suitable
Sobolev topology, is a smooth manifold in the neighborhood of a given solution
(4)g0 if and only if this metric has no Killing vector fields (Marsden, 1981).

Zuckerman’s main result on the existence of a (pre)symplectic form on SL

(Zuckerman, 1987) is the following:

Theorem 4.6. For any Lagrangian density λ = Ldx1 ∧ dx2 ∧ · · · ∧ dxn ∈ 
n,0

(J∞E), consider the associated differential forms η ∈ 
n−1,1(J∞E) and U (λ) ∈

n−1,2(J∞E) defined in (19) and (20) respectively. Then, U (λ) is a conserved
current for the Euler–Lagrange equations Eα(L) = 0. Moreover,

(a) Suppose that C is a compact, oriented (n − 1)-dimensional submanifold
of M. Define differential forms θC and ωC on SL as follows: For any
solution ψ ∈ SL and any two vectors δ1ψ, δ2ψ ∈ Tψ SL ,

θC (ψ) · δ1ψ =
∫

C
ψ∗(iδ1ψ η) and

ωC (ψ) · (δ1ψ, δ2ψ) =
∫

C
ψ∗(iδ2ψ iδ1ψ U (λ)). (23)
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Then, the one-form θC and the two-form ωC satisfy the equations

ωC = d θC and d ωC = 0. (24)

(b) The two-form ωC does not depend on the submanifold C.

We emphasize that this theorem is valid only on the space SL , or “on shell.”
Thus, Eq. (23) and (24) are valid only module the equations of motion Eα(L) = 0
and their linearizations.

The two-form ωC is the (pre)symplectic form on the space of solutions SL

which we were trying to obtain, and (SL , ωC ) is our version of an evolution space
for a general Lagrangian field theory. The important question of when ωC is in fact
symplectic is quite delicate. It is considered in (Crnković and Witten (1987) and
Sternberg (1978) for some special cases (Yang–Mills theory and general relativity,
and Gel’fand–Dikii formal variational calculus respectively), and in Lee and Wald
(1990) in great generality. Some remarks on this issue are also in Zuckerman
(1987). In this paper we will study this crucial problem only briefly: details will
appear elsewhere. To start with, we need the following definition (Olver 1993;
Deligne and Freed, 1999; Zuckerman, 1987):

Definition 4.4. Let λ ∈ 
n,0 be a Lagrangian density, and let ξ be a vector field
on the infinite jet bundle J∞E of the form

ξ = Gα ∂

∂uα
+ Di1 Gα ∂

∂uα
i1

+ Di1 Di2 Gα ∂

∂uα
i1i2

+ . . . .

The vector field ξ is a variational symmetry of λ if there exists an (n, 0)-form R
on J∞E such that

iξ dV λ = dH R. (25)

Variational symmetries are important for two reasons (see Olver, 1993;
Zuckerman, 1987 and also Lee and Wald, 1990): first, they are generalized symme-
tries of the Euler–Lagrange equations Eα(L) = 0 corresponding to the Lagrangian
density λ = Ldx1 ∧ dx2 ∧ · · · ∧ dxn , that is, for any ψ ∈ SL the variational sym-
metry ξ belongs to Tψ SL ; second, Noether’s theorem says that there exists a corre-
spondence between these symmetries and conservation laws of the Euler–Lagrange
equations Eα(L) = 0.

To study the kernel of the presymplectic form ωC we need to consider a
special class of variational symmetries:

Definition 4.5. A local (or gauge) symmetry of a Lagrangian density λ is a one-
parameter family of variational symmetries ξh of λ—with corresponding (n, 0)-
forms Rh satisfying Eq. (25)—in which the parameter h is an arbitrary section of a
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vector bundle V → M over the space of independent variables, and such that the
maps h �→ ξh and h �→ Rh are linear.

This general definition of a local symmetry is due to Zuckerman (1987; Dligne
and Freed, 1999). J. Lee and R. M. Wald also arrived to Definition 5 in their deep
paper (Lee and Wald, 1990), without using the geometric setting of Zuckerman
(1987). These symmetries appear in P. Olver’s treatise (Olver, 1993) as well, in
the context of Noether’s theorem for under-determined Euler–Lagrange systems.
Special cases of local symmetries are the gauge transformations of Yang–Mills
theory, general relativity and parametrized scalar field theory: these cases are
considered in detail in Lee and Wald (1990).

Now, although no complete, rigorous proof has appeared in the literature to
this author’s knowledge, it seems to be a known fact that the kernel of the two-form
ωC can be characterized in terms of local symmetries:

Theorem 4.7. The two-form ωC defined in Eq. (23) is degenerate if and only if
the Lagrangian density λ admits local symmetries. Moreover, if ωC is degenerate,
its kernel is precisely the linear span of the local symmetries of λ.

It is expected that a rigorous proof of this result can be obtained by com-
bining the analysis of Barnich et al. (1991), Lee and Wald (1990), Torre (1992),
and Zuckerman (1987). Assuming Theorem 4 then, the two-form ωC is indeed a
presymplectic form on the space of solutions SL determined by the Lagrangian
density λ = Ldx1 ∧ dx2 ∧ · · · ∧ dxn . By analogy with the theory of Section 2
we construct the covariant phase space for the (field) theory described by λ by
applying Souriau’s reduction to the evolution space (SL , ωC ):

Definition 4.6. Let G be the span of all the local symmetries admitted by the
Lagrangian density λ = Ldx1 ∧ dx2 ∧ . . . ∧ dxn . The space

M = SL/ker ωC = SL/G
equipped with the symplectic form ω̃C determined by the equation π∗ω̃C = ωC ,
in which π : SL → M is the canonical projection, is called the covariant phase
space of the theory determined by λ.

We remark that this definition is only formal, as we are silent with respect
to the precise structure of M. Of course (M, ω̃C ) corresponds to the space of
motions UM of Section 2 (see Definition 1 and Theorem 2) but in that section we
used Frobenius’ theorem to construct UM , and it was of importance for us to have
a general criterium guaranteeing that UM can be given a manifold structure. In the
case of a general Lagrangian field theory, we do not know a priori whether G will
determine a foliation on SL and, assuming that such a foliation exists, neither do we
known whether the space of leaves will admit a manifold structure: it appears that
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all this must be checked on a case by case basis. We refer the reader to Zuckerman
(1987) where G. Zuckerman presents some important examples for which bona
fide covariant phase spaces can be built.

Finally, we would like to mention that we have not considered in this paper
the relevance of covariant phase spaces for quantization of classical systems. For
this, the reader is referred to Aldaya et al. (1992a,b,c). and also to Zuckerman’s
(1987) paper.

5. AN EXAMPLE

In this final section we consider the simple example of a Lagrangian density
of the form (Torre, 1992; Woodhouse, 1992)

λ = L(xi , uα , uα
i ) dx1 ∧ · · · ∧ dxn.

We set ν = dx1 ∧ · · · ∧ dxn , and νi = (−1)i dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧
dxn . We then find

dV λ =
(

∂L

∂uα
θα + ∂L

∂uα
i

θα
i

)
∧ ν = Eα(L) θα ∧ ν

+
[

∂L

∂uα
i

θα
i + Di

(
∂L

∂uα
i

)
θα

]
∧ ν

and, on the other hand, we easily compute

dH

(
∂L

∂uα
i

θα ∧ νi

)
=

[
∂L

∂uα
i

θα
i + Di

(
∂L

∂uα
i

)
θα

]
∧ ν.

Thus, dV λ can be written as dV λ = Eα(L)θα ∧ ν + dHη in which

η = ∂L

∂uα
i

θα ∧ νi . (26)

The “presymplectic potential” θC defined in Eq. (23) now reads

θC (ψ) · δψ =
∫

C
ψ∗(iδψη) =

∫
C

∂L

∂uα
i

Gα νi , (27)

in which δψ is given by (22). This formula, found here from general princi-
ples, coincides with the ones Woodhouse (1992, p.132) and Crnković (1987,
1988) found by formal manipulations. The corresponding (pre)symplectic form ωC

given by

ωC (ψ) · (δ1ψ, δ2ψ) =
∫

C
ψ∗ (

iδ2ψ iδ1ψ U (λ)
) =

∫
C

ψ∗ (
iδ2ψ iδ1ψ dV η

)
,

in which δ1ψ and δ2ψ are vectors in Tψ SL as in (22), becomes
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ωC (ψ) · (δ1ψ, δ2ψ) =∫
C

(
∂2L

∂uβ∂uα
i

[
Gβ

1 Gα
2 − Gβ

2 Gα
1

] + ∂2L

∂uβ

j ∂uα
i

[(
D j G

β

1

)
Gα

2 − (
D j G

β

2

)
Gα

1

])
νi ,

(28)

coinciding again with Woodhouse’s (1992) formulae.
We apply these computations to the homogeneous Monge–Ampere equation

∂2u

∂t2

∂2u

∂x2
=

(
∂2u

∂t∂x

)2

. (29)

The Hamiltonian structure of this equation has been studied with great care by
Nutku (1996, 2001). Nutku uses mainly Dirac’s theory of constraints, but he also
discusses Eq. (29) briefly from the point of view considered here. The Lagrangian
density associated to (29) is (Nutku, 1996, 2001)

λ =
(

l(ux , q)qt − ∂l(ux , q)

∂ux
(ut − q)qx

)
dx ∧ dt , (30)

in which l(ux , q) is an arbitrary smooth function depending on ux and q such that
lux ux �= 0. The Euler–Lagrange equations corresponding to (30) are

−uxx qt + 2qx uxt − q2
x = 0 and uxx ut = uxx q,

that is,

ut = q and qt = 1

uxx
q2

x , (31)

which is of course equivalent to (29). If we set

δψ = Gu ∂

∂u
+ Gq ∂

∂q
+ Dx Gu ∂

∂ux
+ Dt G

u ∂

∂ut
+ Dx Gq ∂

∂qx

+ Dt G
q ∂

∂qt
+ . . . , (32)

Equation (27) for the (pre)symplectic potential θC becomes

θC (ψ) · δψ =
∫

C
−lux qt Gu dt + (l Gq − lux qx Gu) dx

whenever ψ = (u(x , t), q(x , t)) is a solution to Eq. (31), while the (pre)
symplectic form (28) reads

ωC (ψ) · (δ1ψ, δ2ψ) =∫
C

{− lux qqx
[
Gq

1 Gu
2 − Gq

2 Gu
1

] − lux ux qx
[(

Dx Gu
1

)
Gu

2 − (
Dx Gu

2

)
Gu

1

]
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− lux

[(
Dx Gq

1

)
Gu

2 − (
Dx Gq

2

)
Gu

1

] + lux

[(
Dx Gu

1

)
Gq

2 − (
Dx Gu

2

)
Gq

1

] }
dx

− {
lux qqt

[
Gq

1 Gu
2 − Gq

2 Gu
1

] + lux ux qt
[
(Dx Gu

1

)
Gu

2 − (
Dx Gu

2

)
Gu

1

]
+ lux

[(
Dt G

q
1

)
Gu

2 − (
Dt G

q
2

)
Gu

1

]}
dt (33)

in which δ1ψ and δ2ψ are vectors in Tψ SL as in (32), and the equations ut = q and
Dt Gu = Gq have been used to simplify Eq. (28) for ωC . Eq. (33) can be simplified
further using integration by parts and the equations ut = q and Dt Gu = Gq . A
straightforward computation yields

ωC (ψ) · (δ1ψ, δ2ψ) =∫
C

lux ux

(
uxx

[
Gq

1 Gu
2 − Gq

2 Gu
1

] − qx
[(

Dx Gu
1

)
Gu

2 − (
Dx Gu

2

)
Gu

1

])
dx

+ lux ux

(
qx

[
Gq

1 Gu
2 − Gq

2 Gu
1

] − q2
x

uxx

[(
Dx Gu

1

)
Gu

2 − (
Dx Gu

2

)
Gu

1

])
dt. (34)

It is possible to check directly (that is, without using Theorem 4.7.) that the
form ωC given by (34) is nondegenerate. We can thus conclude that (SL , ωC ),
with L determined by (30), is the covariant phase space for the homogeneous
Monge–Ampere equation.

We would like to finish by pointing out a few problems to be considered
elsewhere. First, as already stressed by Nutku (1996, 2001), it is interesting to
note that Lagrangian methods do not much appear in integrable systems, the ex-
ception being the intriguing paper by Sternberg (1978). We wonder if the analysis
of Sternberg can be generalized to other integrable hierarchies. Second, we also
wonder if Zuckerman’s (1987) approach can be related to the Hamiltonian oper-
ators of Olver (1989, 1993). Third, with respect to the Monge–Ampere example,
Nutku (1996, 2001) points out that Eq. (29) possesses a multi-hamiltonian struc-
ture (Olver, 1993). One wonders how this rich structure reflects itself at the phase
space level considered here.

REFERENCES

Abraham, R. and Marsden, J. E. (1978). Foundations of Mechanics, 2nd end., Addison-Wesley Reading,
MA.

Aldaya, V., Navarro-Salas, J., and Navarro, M. (1992a). On the canonical structure of higher derivative
field theories: The gravitational WZW model. Physics Letters B 287, 109–118.

Aldaya, V., Navarro-Salas, J., and Navarro, M. (1992b). Covariant phase-space quantization of the
Jackiw–Teitelboim model of two-dimensional gravity. Physics Letters B 292, 19–24.

Aldaya, V., Navarro-Salas, J., and Navarro, M. (1992c). Covariant phase-space quantization of the
induced 2D gravity. Nuclear Physics B 403, 291–314.

Anderson, I. M. (1989). The variational bicomplex, Utah State University Technical Report.
http://www.math.usu.edu/∼fg mp/Pages/Publications/Publications.html.



On Covariant Phase Space and the Variational Bicomplex 1285

Anderson, I. M. (1992). Introduction to the variational bicomplex. Contemporary Mathematics 132,
51–73.

Anderson, I. M. and Kamran, N. (1995). Conservation laws and the variational bicomplex for second-
order scalar hyperbolic equations in the plane. Acta Applicandae Mathematicae 41, 135–144.

Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics, 2nd edn., Springer, Berlin.
Bacry, H. (1967). Space–time and degrees of freedom of the elementary particle. Communication in

Mathematical Physics 5, 97–105.
Barnich, G., Henneaux, M., and Schomblond, S. (1991). Covariant description of the canonical for-

malism. Physical Review D 44, R939–R941.
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